
THREE-BODY PROBLEM AND SIMULATION

SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

ABSTRACT. The three-body problem is a fundamental model in astrophysics that studies the law-of-
motion problem of three objects that are considered as masses under the gravitation influence. This
paper utilizes classical mechanical equations and the advantages of computers in terms of numerical
operations to iteratively solve the three-body problem and determine its bound state. In the model,
the three objects are analyzed by force; equations are listed using Newton’s second law and law of
universal gravitation; and the Python program is written according to the equations for the iterative
solution, which calculates the position and velocity of the three objects at a specific time under
different circumstances. In addition, in this paper, the matplotlib and Python animation are utilized
to investigate and display the problem. We designed a simple and friendly interface, and the position
and velocity of the objects are also shown in the axes in real-time through the animation to perform
astrophysical experiments on the computer.

1. INTRODUCTION

The general three-body classical problem is one of the oldest and most complex problems in
physics and mathematics. In short, the task is to study and model the motion of a three-body
system in space under the influence of pairwise1 interactions of bodies in accordance with Newton’s
theory of gravitation. Solutions to this problem require that future and past motions of the bodies
be uniquely determined based on their present velocities and positions.[5] In general, the motions
of the bodies take place in three dimensions, and no restrictions will be added on their masses
nor on the initial conditions, referring to the general three-body problem. At the first glance, the
complexity of the problem is not obvious, since two-body systems have been well-known closed-
form solutions given in terms of elementary functions. However, adding one extra body makes
the system too complicated to obtain similar types of solutions. In the past, many physicists,
astronomers and mathematicians attempted unsuccessfully to find close-form solutions to the three-
body problem. Such solutions do not exist because the three bodies are generally unpredictable.

Since the difficulties in solving the three-body problem lie in its uncertainty and unpredictabil-
ity, one can consider a third type of approach based on force analysis and classical mechanical
equations, taking advantage of the iterative computation of computers to find numerical solutions.

Date: May 28, 2023.
1in pair

1

2 SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

2. MODEL ASSUMPTION

The restricted three-body problem assumes that the mass of one of the bodies is negligible,
including the interaction forces between it and the other two bodies. So the problem is simplified
as a two-body problem with their orbitals being conic sections with the center of mass on one
of their focuses. We have four kinds of restricted three-body problems respectively: the circular
restricted three-body problem, the elliptical restricted three-body problem, the parabolic restricted
three-body problem, and the hyperbolic restricted three-body problem.

The circular restricted three-body problem is the special case in which two of the bodies are in
circular orbits around their common center of mass, and the third mass is small and moves in the
same plane. In the circular problem, with respect to a rotating reference frame, the two co-orbiting
bodies are stationary, and the third has five equilibrium points. Three of them are collinear2 with
the masses and are unstable. The other two are located on the third vertex of both equilateral
triangles of which the two bodies are the first and second vertices. For a sufficiently small mass
ratio, the triangular equilibrium points are stable. The five equilibrium points are known as the
Lagrange points in the circular restricted three-body problem.[7] In addition, it can be quite helpful
to consider the effective potential energy3.

3. NOTATIONS

TABLE 1. Variable Description

Symbol Definition
Mi Mass of the body i
Ri The position of body i with respect to the origin of inertial Cartesian coordinate system
Rc The center of mass
rij The position of body i with respect to body j
t Time

Ekin Kinetic energy
Epot Potential energy
pki Momentum of body i in direction of k
qki The position of body Pi in direction of k

2lying on or passing through the same straight line.
3The effective potential (also known as effective potential energy) combines multiple, perhaps opposing, effects

into a single potential. It may be used to determine the orbits of planets (both Newtonian and relativistic) and to
perform semi-classical atomic calculations, and often allows problems to be reduced to fewer dimensions.

THREE-BODY PROBLEM AND SIMULATION 3

4. MODEL BUILDING

FIGURE 1. The last day of 2019, it was surprised that ”three suns overhead”. The
three-body civilization is really coming?

4.1. Basic formulation. In the general three-body problem, three bodies will move in three-
dimensional space under their mutual gravitational interactions. Throughout this paper, we will
use Newton’s theory of gravity to describe the gravitational interactions between the three bodies.
To fully solve the general three-body problem, it requires the past and future motions of the bodies
to be determined by their present positions and velocities.[1] We denote the three masses by Mi,
where i = 1, 2, 3, and the positions with respect to the origin of inertial Cartesian coordinate sys-
tem by the vector Ri, and define the position of one body with respect to another by rij = Ri−Rj ,
where rij = −rij, j = 1, 2, 3 and i ̸= j. With the assumption that Newton’s gravitational force is
the only force acting upon the bodies, the resulting equations of motion will be

(1) MiR̈i = G
3∑

j=1

MiMj

r3ij
rij

where G is the universal gravitational constant.

4.2. Integrals of Motion. We can sum up the equation (1) over all three bodies. The result is

(2)
3∑

i=1

MiR̈i = 0

after integration, we can get

(3)
3∑

i=1

MiṘi = C1

4 SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

where C1 is a constant, and one more integration yields

(4)
3∑

i=1

MiRi = C1t+ C2

with C2 = constant.
Since the center of mass is defined as Rc =

∑3
i=1 MiRi∑3
i=1 Mi

, the equation(4) determines the motion,
and the equation(3) shows that it moves with a constant velocity. The two vectors C1, C2 are the
integrals of the motion, and we will have six integrals of motion by taking the components of these
vectors.

The conservation of angular momentum around the center of the coordinate system in the general
three-body problem gives other integrals of motion. We choose to take a vector product of Ri with
equation (2) and obtain

(5)
3∑

i=1

MiRiR̈i = 0

which after integration will be

(6)
3∑

i=1

MiRiṘi = C3

where C3 = constant. Hence, there are three more integrals of motion.
According to the conservation of the total energy of the system, we will add the integral of

motion with the kinetic energy Ekin given by

(7) Ekin =
1

2

3∑
i=1

MiṘ
2
i

(8) Epot = −G

2

3∑
i,j=1

MiMj

rij

where i ̸= j, we have the total energy Etot = Ekin + Epot, which will be an constant to be also an
integral of motion.

4.3. Hamilton Formulation. The standard formulation of the general three-body problem pre-
sented in the previous subsection is often replaced by the Hamilton formulation.

We consider the natural unit and introduce G = 1 into the equation (1) and (8). Moreover, we
write Ri = (Rxi, Ryi, Rzi), where Rxi, Ryi, and Rzi are components if the vector Ri in the inertial
Cartesian coordinate system and k = x, y, z. Using this notion , we can define the momentum, pki,
as

(9) pki = Mi
dqki
dt

and the kinetic energy as

(10) Ekin =
3∑

k,i=1

p2ki
2Mi

THREE-BODY PROBLEM AND SIMULATION 5

and introduce the Hamiltonian H = Ekin +Epot that allows us to write the equations of motion in
the following Hamiltonian form

(11)
dqki
dt

=
∂H

∂pki
and

dpki
dt

= −∂H

qki
We can set up two first-order ODEs for each one of three planets in each of three directions,

which will make up a set of 18 first-order ODEs.
The equations of motion describing the general three-body problem (either equation (10) or

equation (11)) can be further reduced by considering the general Hill problem4, in which M1 >>
M2 and M1 >> M3, however M3 is not negligible when compared to M2

4.4. General Properties of Solutions of ODEs. Solutions of the ODEs describing the general
three-body problem can be represented by curves in 3D. In a special case, a solution can be a
single point known also as a fixed point or as an equilibrium solution; a trajectory can either reach
the fixed point or approach it symptomatically. And periodic orbits are centered around the fixed
points, which are called stable points or stable centers. Moreover, if a trajectory spirals toward a
fixed point or moves away from it, the point is called a spiral sink or spiral source.[6]

From a mathematical point of view, it requires solutions to ODEs existing and being unique.
The existence can be either global when a solution is defined for any time in the past, present,
and future, or local when it is defined only for a short period. The uniqueness of the solution
means there is only one solution at each point. For given ODEs, the existence and uniqueness
are typically stated by mathematical theorems. Let us consider the following first-order ODE
y′(x) = f(y(x), x), where y′ = dy

dx
, and the initial condition is y(x0) = y0 .

4the study of the motion of two small and gravitationally interacting particles in a field of force not affected by the
presence of these particles

6 SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

5. MODEL SOLVING AND SYSTEM SIMULATION

5.1. Programming and Interfacial Design. First, we set up and initialize the masses, initial
position, and initial velocity of planets. Then we model the evolution of the system by finding out
the positions and velocity for one more step of δt. Finally, we draw the points of each second and
wrap it up as a gif picture to simulate the moving path of each planet.

5.2. Divergence. We have so far observed the behavior of one initial set of points in three-
dimensional space for each planet. However, it is especially interesting to consider the behavior
of many initial points. One can consider the behavior of points in R3, but this is often difficult to
visualize as the trajectories may form something like a solid object. To avoid this difficulty, we can
restrict our initial points to some subspace.[8]

In R3 we can choose vectors in two basis vectors, x and y for example, to vary while z stays
constant. Allowing two basis vectors to change freely in R3 forms a two-dimensional sheet in
that three-dimensional space, or a plane. What happens to points embedded in this plane as they
observe Newton’s laws of gravitation, and in particular to different points in this plane that have
different sensitivities to initial conditions.

As we have three bodies, we can choose one of them to allow us to start in different locations
in a two-dimensional plane while holding the other two bodies fixed in their starting points before
observing the trajectory resulting from each of these different starting locations. As we are inter-
ested in divergence, we can once again compare the trajectory of the planet at each of the starting
points to a slightly shifted planet. As we are now dealing with a multidimensional array of initial
points rather than only three per planet, a slightly different approach is required. [2]

The computational structure to calculate sensitivity is initialized by changing the 3×1×1 initial
points for planet 1 to an array of size 3 by y-residue and x-residue for the planet. And we still need
to have arrays of identical dimensions for all the other planets, as their trajectories each depend on
the initial points of planet 1. This means that we must make arrays that track the motion of each
planet in three-dimensional space for all points in the initial plane of possible plant 1 values.[3]

Then, we use ”Numpy”, an indispensable library for mathematical computations, and ”PyTorch”
to speed up the three-body divergence calculations.

After 40,000 time steps, initial points on the x, y plane of planet 1 on both x and y axes, we have
the following figure2

We notice that something must exist in the initial positions of the second and third planets such
that symmetry results for the y, z plane. In general terms, the two starting points that result in
identical trajectories in space will experience the same divergence rate. Now consider the planets
2 and 3 in three-dimensional space. The points that are equidistant from any point on the line
connecting planets 2 and 3, projected onto the y, z plane are of equal distance to planets 2 and 3.
Since each pair of points in the y, z plane that is equidistant from any point on the line will thus
have identical trajectories, they will have equal divergence.[10]

When we plot the line together with the map formed through divergence in the y,z plane for x =
-10, we will see the line of our mirror symmetry. where lighter values indicate earlier divergence.

THREE-BODY PROBLEM AND SIMULATION 7

FIGURE 2. The divergence figure for three body system in the plane consisted by
xy-axis, where lighter values indicating earlier divergence

FIGURE 3. Mirror Symmetry: we can see a clear symmetry relationship within this
figure. The divergence figure for three body system in the plane consisted by yz-
axis, where lighter values indicating earlier divergence

8 SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

5.3. Three-body system Plot. In the process of investigating the three-body system, researchers
invested great energy on find a periodic route (actually people think investigating the period route
is the only method to understand the complex three-body system). And in the past decades, re-
searchers utilized the numerical integration method to find some tidy plate periodic routes.[4] For
example:

FIGURE 4. Periodic route Example 1

FIGURE 5. Periodic route Example 2

THREE-BODY PROBLEM AND SIMULATION 9

In our project, we use PyTorch and matplotlib to make several three-body system paths. When
we set the three-body with the same masses, we get their following path in 1000 seconds.

FIGURE 6. The path of three planets with the same masses

However, when we change the masses of the three-body into a system of one with extremely
large mass and the other two have the same low masses, we get the following path in 1000 seconds.

FIGURE 7. The path of three planets with one having extremely large mass

10 SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

Also, we simulated the three-body system over the earth, Jupiter and Sun, and the following is
the result. In the graph, x-axis and y-axis denotes the distance in these two directions with one unit
being 1× 108 km.

FIGURE 8. Earth vs. Jupiter

FIGURE 9. Larger Vision Earth vs. Jupiter

THREE-BODY PROBLEM AND SIMULATION 11

5.4. Outlooks. One can hope that the three-body problem is restricted to celestial mechanics and
that it does not find its way into other fields of study. Great effort has been expended to learn about
the orbitals an electron will make around the nucleus of a proton, so hopefully, this knowledge is
transferable to an atom with more than one proton.

Solutions to the three-body problem are either restricted to a subset of initial conditions or are
references to the process of numerical integration by a computer. The latter idea gives rise to the
sometimes-held opinion that the three-body problem is solvable now that high-speed computers are
present because one can simply use extremely precise numeric methods to provide a solution.[9]

To understand why computers can not solve our problems, we should first pretend that perfect
observation were made. This means a perfect measurement of G will not help since it would take
infinite time to enter into a computer exactly. That being said, computational methods are very
good for determining short-term trajectories. Moreover, when certain bodies are much larger in
mass than others, the ability to determine trajectories is substantially enhanced. However, for an
aperiodic equation system, the ability to determine trajectories for all time is impossible.

6. CONCLUSION

We have reviewed the three-body problem in which three spherical masses interact with each
other only through the gravitational interactions described by Newton’s theory of gravity, and no
restrictions are imposed on the initial position and velocities. We overview several solutions meth-
ods to the problem, giving special emphasis to the difficulty of finding closed-form solutions to
the three-body problem due to its unpredictable behavior. We gave detailed descriptions of gen-
eral and restricted three-body problems and described several analytical and numerical methods
utilized to find solutions, perform stability analysis and make figures for periodic orbits and res-
onances. The three-body problem described in this paper may be considered classical since the
bodies are assumed to be spherical objects and points of given masses, as described by Newton’s
theory of gravity.

12 SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

7. REFERENCE

REFERENCES

[1] Francesco Calogero. Solution of a three-body problem in one dimension. Journal of Mathematical Physics,
10(12):2191–2196, 1969.

[2] Vitaly Efimov. Energy levels arising from resonant two-body forces in a three-body system. Physics Letters B,
33(8):563–564, 1970.

[3] Joshua Fitzgerald and Shane Ross. Geometry of transit orbits in the periodically-perturbed restricted three-body
problem. arXiv preprint arXiv:2203.16019, 2022.

[4] Bastian Kaspschak and Ulf-G Meissner. Three-body renormalization group limit cycles based on unsupervised
feature learning. Machine Learning: Science and Technology, 2022.

[5] Christian Marchal. The three-body problem. 2012.
[6] Valtonen MJ, Mauri Valtonen, and Hannu Karttunen. The three-body problem. Cambridge University Press, 2006.
[7] Zdzislaw E Musielak and Billy Quarles. The three-body problem. Reports on Progress in Physics, 77(6):065901,

2014.
[8] Esben Nielsen, Dmitri Vladimir Fedorov, Aksel S Jensen, and Eduardo Garrido. The three-body problem with

short-range interactions. Physics Reports, 347(5):373–459, 2001.
[9] Yilun Shang. A system model of three-body interactions in complex networks: Consensus and conservation.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022.
[10] Yi Zhou and Wei Zhang. Analysis on nonlinear dynamics of two first-order resonances in a three-body system.

The European Physical Journal Special Topics, pages 1–18, 2022.

THREE-BODY PROBLEM AND SIMULATION 13

8. APPENDIX

8.1. Core Code.
import the third-part library
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
set the 3D graph background
plt.style.use('dark_background')
set the masses of planets
m_1, m_2, m_3 = 10000, 100, 100

p : position v: velocity
set the coordintes for planets
p1_start = x_1, y_1, z_1
p1_start = np.array([-10, 10, -11])
v1_start = np.array([-3, 0, 0])

p2_start = x_2, y_2, z_2
p2_start = np.array([0, 0, 0])
v2_start = np.array([0, 0, 0])

p3_start = x_3, y_3, z_3
p3_start = np.array([10, 10, 12.00000])
v3_start = np.array([3, 0, 0])

starting coordinates for planets shifted
p1_start = x_1, y_1, z_1
p1_start_prime = np.array([-10, 10, -11])
v1_start_prime = np.array([-3, 0, 0])

p2_start = x_2, y_2, z_2
p2_start_prime = np.array([0, 0, 0])
v2_start_prime = np.array([0, 0, 0])

p3_start = x_3, y_3, z_3
p3_start_prime = np.array([10, 10, 12.000001])
v3_start_prime = np.array([3, 0, 0])
def accelerations(p1, p2, p3):

'''A function to calculate the derivatives of x, y, and z
given 3 object and their locations according to Newton's laws
'''
planet_1_dv = -9.8 * m_2 * (p1 - p2)/(np.sqrt(np.sum([i**2 for i in
p1 - p2]))**3) - 9.8 * m_3 * (p1 - p3)/(np.sqrt(np.sum([i**2 for i
in p1 - p3]))**3)

planet_2_dv = -9.8 * m_3 * (p2 - p3)/(np.sqrt(np.sum([i**2 for i in

14 SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

p2 - p3]))**3) - 9.8 * m_1 * (p2 - p1)/(np.sqrt(np.sum([i**2 for i
in p2 - p1]))**3)

planet_3_dv = -9.8 * m_1 * (p3 - p1)/(np.sqrt(np.sum([i**2 for i in
p3 - p1]))**3) - 9.8 * m_2 * (p3 - p2)/(np.sqrt(np.sum([i**2 for i
in p3 - p2]))**3)

return planet_1_dv, planet_2_dv, planet_3_dv
time parameters
delta_t = 0.001
steps = 100000
initialize solution array
p1 = np.array([[0.,0.,0.] for i in range(steps)])
v1 = np.array([[0.,0.,0.] for i in range(steps)])

p2 = np.array([[0.,0.,0.] for j in range(steps)])
v2 = np.array([[0.,0.,0.] for j in range(steps)])

p3 = np.array([[0.,0.,0.] for k in range(steps)])
v3 = np.array([[0.,0.,0.] for k in range(steps)])

second trajectory start, for comparison to (p1, p2, p3)
p1_prime = np.array([[0.,0.,0.] for i in range(steps)])
v1_prime = np.array([[0.,0.,0.] for i in range(steps)])

p2_prime = np.array([[0.,0.,0.] for j in range(steps)])
v2_prime = np.array([[0.,0.,0.] for j in range(steps)])

p3_prime = np.array([[0.,0.,0.] for k in range(steps)])
v3_prime = np.array([[0.,0.,0.] for k in range(steps)])
starting points
p1[0], p2[0], p3[0] = p1_start, p2_start, p3_start

v1[0], v2[0], v3[0] = v1_start, v2_start, v3_start

p1_prime[0], p2_prime[0], p3_prime[0] = p1_start_prime, p2_start_prime,
p3_start_prime

v1_prime[0], v2_prime[0], v3_prime[0] = v1_start_prime, v2_start_prime,
v3_start_prime

time = [0]

evolution of the system
for i in range(steps-1):

time.append(i)

THREE-BODY PROBLEM AND SIMULATION 15

calculate derivatives
dv1, dv2, dv3 = accelerations(p1[i], p2[i], p3[i])
dv1_prime, dv2_prime, dv3_prime = accelerations(p1_prime[i],
p2_prime[i], p3_prime[i])

v1[i + 1] = v1[i] + dv1 * delta_t
v2[i + 1] = v2[i] + dv2 * delta_t
v3[i + 1] = v3[i] + dv3 * delta_t

p1[i + 1] = p1[i] + v1[i] * delta_t
p2[i + 1] = p2[i] + v2[i] * delta_t
p3[i + 1] = p3[i] + v3[i] * delta_t

alternate trajectory (primes are not derivatives)
v1_prime[i + 1] = v1_prime[i] + dv1_prime * delta_t
v2_prime[i + 1] = v2_prime[i] + dv2_prime * delta_t
v3_prime[i + 1] = v3_prime[i] + dv3_prime * delta_t

p1_prime[i + 1] = p1_prime[i] + v1_prime[i] * delta_t
p2_prime[i + 1] = p2_prime[i] + v2_prime[i] * delta_t
p3_prime[i + 1] = p3_prime[i] + v3_prime[i] * delta_t

For the purposes of plotting trajectories overt time

if i % 1000 == 0:
fig = plt.figure(figsize=(10, 10))
ax = fig.gca(projection='3d')
plt.gca().patch.set_facecolor('black')
ax.set_xlim([-50, 300])
ax.set_ylim([-10, 30])
ax.set_zlim([-30, 70])

plt.plot([i[0] for i in p1], [j[1] for j in p1], [k[2] for k in
p1] , 'ˆ', color='red', lw = 0.05, markersize = 0.01, alpha=0.5)
plt.plot([i[0] for i in p2], [j[1] for j in p2], [k[2] for k in
p2] , 'ˆ', color='white', lw = 0.05, markersize = 0.01, alpha=0.5)
plt.plot([i[0] for i in p3], [j[1] for j in p3], [k[2] for k in
p3] , 'ˆ', color='blue', lw = 0.05, markersize = 0.01, alpha=0.5)
plt.plot([i[0] for i in p1_prime], [j[1] for j in p1_prime],
[k[2] for k in p1_prime], 'ˆ', color='blue', lw=0.05,
markersize=0.01, alpha=0.5)

plt.axis('on')

optional: use if reference axes skeleton is desired,

16 SHENGYUAN WANG, ORIANNA WANG, ZIYI WANG

ie plt.axis is set to 'on'
ax.set_xticks([]), ax.set_yticks([]), ax.set_zticks([])

make pane's have the same colors as background
ax.w_xaxis.set_pane_color((0.0, 0.0, 0.0, 1.0)),
ax.w_yaxis.set_pane_color((0.0, 0.0, 0.0, 1.0)),
ax.w_zaxis.set_pane_color((0.0, 0.0, 0.0, 1.0))
ax.view_init(elev = 20, azim = i//1000)
set up saving path
plt.savefig('graphB{}'.format(i//1000), bbox_inches='tight',
dpi=300)
plt.close()

fig = plt.figure(figsize=(10, 10))
ax = fig.gca(projection='3d')
plt.gca().patch.set_color("black")
plt.gca().patch.set_edgecolor("black")
plt.gca().patch.set_facecolor('black')

plt.plot([i[0] for i in p1], [j[1] for j in p1], [k[2] for k in p1] ,
'ˆ', color='red', lw = 0.05, markersize = 0.01, alpha=0.5)
plt.plot([i[0] for i in p2], [j[1] for j in p2], [k[2] for k in p2] ,
'ˆ', color='white', lw = 0.05, markersize = 0.01, alpha=0.5)
plt.plot([i[0] for i in p3], [j[1] for j in p3], [k[2] for k in p3] ,
'ˆ', color='blue', lw = 0.05, markersize = 0.01, alpha=0.5)
plt.plot([i[0] for i in p2_prime], [j[1] for j in p2_prime], [k[2] for
k in p2_prime], 'ˆ', color='blue', lw=0.05, markersize=0.01, alpha=0.5)

plt.axis('on')

optional: use if reference axes skeleton is desired,
ie plt.axis is set to 'on'
ax.set_xticks([]), ax.set_yticks([]), ax.set_zticks([])

make pane's have the same colors as background
ax.w_xaxis.set_pane_color((0.0, 0.0, 0.0, 1.0)),
ax.w_yaxis.set_pane_color((0.0, 0.0, 0.0, 1.0)),
ax.w_zaxis.set_pane_color((0.0, 0.0, 0.0, 1.0))

ax.view_init(elev = 20, azim = t)
plt.savefig('{}'.format(t), dpi=300, bbox_inches='tight')
plt.show()
plt.close()

	1. Introduction
	2. Model Assumption
	3. Notations
	4. Model Building
	4.1. Basic formulation
	4.2. Integrals of Motion
	4.3. Hamilton Formulation
	4.4. General Properties of Solutions of ODEs

	5. Model Solving and System Simulation
	5.1. Programming and Interfacial Design
	5.2. Divergence
	5.3. Three-body system Plot
	5.4. Outlooks

	6. Conclusion
	7. Reference
	References
	8. Appendix
	8.1. Core Code

