
Problem Chosen

C
2022

MCM/ICM
Summary Sheet

Team Control Number

2222562

Trading Strategies: An Optimal Trading System based on LSTM and Dynamic Programming

Summary

Market Traders always strive to find trading strategies to trade voltage assets to maximize total
return. Based on the daily price of Gold and Bitcoin in the recent five years, considering transaction
commission, we propose a series of strategies.

First, we treat the floating Bitcoin and Gold prices as two stocks in the data preprocessing part and
remove all missing values. Since the future stock prices are correlated with the past prices, we choose
time series models, ARIMA and LSTM.

In the ARIMA model, we normalize the data non-linearly by using the log function and then
determine the parameters of ARIMA by using ACF and PACF graphs. Also, we try to use the dynamic
ARIMA method. The basic algorithm of this model is to use all previous values as training data and
then predict the next day’s value. However, after we visualize the prediction results, we find that the
predicted values were the latter-day displacement of the original data, which is a case of overfitting.
No matter how we adjust the parameters, overfitting could not be avoided, so we give up this method.

For the LSTM model, we use linear normalization to get the training data and then get the most
suitable combination of hyperparameters by observing the learning curves. Considering the results of
the visualized comparison and MSE comparison of two models, we choose to use the LSTM model to
obtain the predicted assets’ daily price.

From the perspective of maximizing investment returns, we also choose the LSTM model. Com-
pared to the ARIMA model, the LSTM model fits a curve with much larger and more frequent
fluctuations. In other words, the ARIMA curve only shows the long-term trend of Bitcoin and Gold
prices, but the LSTM curve reflects the daily price changes in more detail. To maximize the investing
profits, short-term investments are more advantageous than long-term investments.

After we get the predicted assets daily price, we compare the result from two models with pre-set
weights and equal weights check the correlation, covariance matrix, and risks index to prove the validity
of setting weight for different voltage assets. Through Monte Carlo Simulation, we utilize Markowitz
model to find the effective weights of asset combinations. Then we apply Sharpe Ratio to find out
that the most optimal weight of combination for our predicted assets daily price is allocating $188 for
Gold and $812 for Bitcoin.

Then we use Dynamic Programming strategy to create an Optimal Action Model to find the best
dates for trading. Applying the trading timeline created by this model in actual data, we successfully
help our assets appreciate from $1,000.00 to $14,140,234.70.

Finally, we test whether our overall model is sensitive to transaction commission and find out the
Bitcoins returns decrease 54% when transaction commission changes from 0.01 to 0.03, and Gold
returns decrease 21% when transaction commission changes from 0.005 to 0.015. This shows that our
overall model is sensitive to transaction commission change.

Our model results propose some confident investing strategies on the portfolio and recommendations
for allocating Gold and Bitcoin assets, e.g., the time choice for trading assets, the amount of trading
assets, etc. We also write a memorandum for Trade Marketers to summarize our analysis and results,
together with our recommendations.

Keywords: LSTM; ARIMA; Dynamic Programming

Team 2222562 Page 1 of 25

Contents
1 Introduction 3

1.1 Problem Background . 3
1.2 Restatement of the problem . 3
1.3 Workflow . 3
1.4 Assumptions . 4
1.5 Notations . 5

2 Data Prediction 5
2.1 Data Preprocessing . 5
2.2 AutoRegressive Integrated Moving Average (ARIMA) 6

2.2.1 Introduction to the Model . 6
2.2.2 Adjustment of the Model . 6
2.2.3 Model Outcome . 9

2.3 Long Short-Term Memory (LSTM) . 9
2.3.1 Introduction to the Model . 9
2.3.2 Adjustment of the Model . 10
2.3.3 Model Outcome . 11

3 Model Assessment 12
3.1 Visualized comparison . 12
3.2 Evaluation with MSE . 12

4 Optimal Portfolio Model 13
4.1 Portfolio with Given weights . 13
4.2 Equally-weighted Portfolio . 14
4.3 Exploring the optimal portfolio of stocks . 16

4.3.1 Monte Carlo Simulation . 16
4.3.2 Investment risk Minimization Portfolio . 17
4.3.3 Optimal portfolio of Investments . 17

4.4 Model Outcome . 18

5 Optimal Strategy Model 19
5.1 Introduction to Dynamic Programming Model . 19
5.2 Model Outcome . 19

6 Sensitivity Analysis 20
6.1 Method . 20
6.2 Result . 21

7 Strengths and Weaknesses 21
7.1 Strengths . 21
7.2 Weaknesses . 21

8 Conclusion 22

Team 2222562 Page 2 of 25

9 Memorandum 23

References 24

Appendices 24

Appendix A: Part of our LSTM Source Code 24

Team 2222562 Page 3 of 25

1 Introduction

1.1 Problem Background
A profitable volatile assets trading strategy is vital to Market traders. It is always applied to optimize

capital allocation to maximize the overall performance, such as expected return. Return maximization
is based on the estimates of a stock’s potential return and risks. In general, investors make stock
investment decisions by predicting the future direction of stocks’ ups and downs. In the modern
financial market, successful investors are good at using high-quality information to make investment
decisions, and they can make quick and effective decisions based on the information they have already
had. Thus, the field of stock investment attracts the attention of financial practitioners and ordinary
investors, and researchers in academics.

1.2 Restatement of the problem
In this problem, we are given two data sets: the Bitcoin and the daily Gold prices from 9/11/2016

to 9/10/2021 and are asked to develop a model using only the price data up to that day to decide if the
trader should buy, hold, or sell their possessions in each day.

The initial possession we will start with on 9/11/2016 is $1, 000, and we are trying to maximize the
total return in our portfolio, which consists of cash, Gold, and Bitcoin in U.S dollars, on 9/10/2021.
We will accomplish the following tasks according to the given data:

• Develop predicted models for the price of Gold and Bitcoins.

• Develop a trading strategy using our predicted model to maximize total return.

• Analyze the sensitivity of our strategy to transaction costs.

• Write a memorandum to the trader by summarizing our trading strategy, model, and result.

1.3 Workflow
Our main goal is to determine the best trading strategy to maximize our profit. To achieve this

objective, we first develop several predicted models using Autoregressive integrated moving average
(ARIMA) and Long short-term memory (LSTM) to forecast the price of Gold and bitcoin using past
data. Then, we compare and analyze these models to find the best price prediction model for further
use. Once we successfully predict the price of Gold and Bitcoins, we develop the optimal portfolio
model to find the optimal ratio between Gold and Bitcoins in our investment. After that, we combine
the optimal weight with dynamic programming to form our optimal strategy model. Last, we obtain
the final result through our optimal strategy model.

Team 2222562 Page 4 of 25

Figure 1: Overall Workflow

1.4 Assumptions
We make the following main assumptions to simplify our model and eliminate the complexity:

• We assume that the U.S. dollar has not experienced inflation in these five years.

• We assume that the volume of trading for Gold and Bitcoins can be fractions.

• We assume that fractions of cents will not be truncated during transactions.

• We assume that the given data is the closing price each day.

Team 2222562 Page 5 of 25

1.5 Notations

Table 1: Variable Description

Symbol Definition
𝐿 Lag operator
𝜙𝑖 Parameter of autoagressive part of ARIMA
𝜃𝑖 Parameters of moving average part of ARIMA
𝜖𝑡 Error terms of ARIMA
𝐶𝑡 Cell state
𝑈𝑡 Update filter
𝑂𝑡 Cell state that is going to output
ℎ𝑡 Hidden state to be passed on next cell
𝜎𝑝 Standard deviation of portfolio∑

Covariance matrix of returns
𝜔 Portfolio Weights (𝜔𝑇 is transpose of portfolio weights)
𝑅𝑠 Sharpe Ratio
𝑅𝑝 Expected rate of return
𝑅 𝑓 Interest Rate with no risk
𝜎𝑟 Standard deviation of excess returns
𝑀𝑡 Cash Amount at time 𝑡
𝑆𝑡 Stock Amount at time 𝑡
𝑋𝑡 the 𝑡th data using the ARIMA model
𝑒𝑡 the 𝑡th error term using the ARIMA model
𝑌𝑖 the 𝑖th real value
𝑌𝑖 the 𝑖th predicted value
𝑛 data size

2 Data Prediction

2.1 Data Preprocessing
First, we preprocess both Bitcoin and Gold data sets. When looking at the Gold data, we find that

there are missing values (NA value) in the price column of the Gold data. Considering that the Gold
data has only two dimensions (date and price) and the original Gold data has only ten missing values
for 1265 rows, we simply ignore the missing values. In other words, we only calculate 1255 Gold data.

Based on our initial data analysis, we can consider the daily floating values of Bitcoin and Gold as
two stocks. As predictions in stock trading require the consideration of previous data, we choose to use
time series models as our primary forecasting models. We fit, analyze, and compare two models: the
autoregressive integrated moving average (ARIMA) and the long short-term memory (LSTM) models.

To better compare and evaluate the strengths and weaknesses of the models, we chose to use the
Bitcoin data, which is more variable than the Gold data, as our training and testing data. We used the
first 80% of this data (index numbers from 1 to 1460) as training data and the last 20% (index numbers

Team 2222562 Page 6 of 25

from 1461 to 1826) as testing data to visualize the comparison between predicted and true values.
Also, in order to come up with a more accurate model, we choose not to do any trading operations in
the first five days but just record the data. In other words, our predicted values start from the sixth day.
Figure 1 shows the overall process of data prediction.

2.2 AutoRegressive Integrated Moving Average (ARIMA)
2.2.1 Introduction to the Model

ARIMA is a combination of two models, the Auto-Regressive model (AR) and the Moving Average
model (MA). AR demonstrates the consideration of past values in the regression equation of the series
𝑌 , while MA represents the model’s error as a combination of previous error terms. The auto-regressive
parameter 𝑝 specifies the number of lags, the moving average nature of the model is defined as parameter
𝑞, and the differencing variable 𝑑 is used to remove the trend and convert a non-stationary time series
to a stationary one. Thus, ARIMA[𝑝, 𝑑, 𝑞] is defined as

(1 −
𝑝∑︁
𝑖=1

𝜙𝑖𝐿
𝑖) (1 − 𝐿)𝑑𝑋𝑡 = 𝛿 + (1 +

𝑞∑︁
𝑖=1

𝜃𝑖𝐿
𝑖)𝜖𝑡 ,

where 𝐿 is the lag operator, 𝜙𝑖 are the parameters of the autoregressive part of the model, 𝜃𝑖 are the
parameters of the moving average part, and 𝜖𝑡 are error terms.

2.2.2 Adjustment of the Model

First, we choose to plot a trend graph of the current data (Figure 2). From the left graph in Figure
2, the series is not yet smooth, so we choose to normalize the original data with log function and do
differencing to make the trend smoother, shown on the right graph in Figure 2. We also conduct the
Dickey-Fuller test to check the stationary, and the test returns a 𝑝-value of 0.01, which means we reject
the null hypothesis and accept the alternative: the data is stationary[5].

Figure 2: Plot of the original Training Data and the Training Data after normalizing and differencing

Team 2222562 Page 7 of 25

To determine the order of our parameters, we look at the difference in lags in both the ACF and
PACF graphs (Figure 3 and Figure 4 respectively). In the ACF graph (Figure 3), the curve drops
significantly after the first lag, so we should model with one moving average component (𝑞 = 1). For
the PACF graph (Figure 4), it has a significant cut-off after 1st lag, which indicates the time lag tends
to be one (𝑝 = 1). Thus, the optimal model may be ARIMA[1, 0, 1][7].

Figure 3: ACF of the Training Data Figure 4: PACF of the Training Data

We use the auto.arima() function in R to get the best ARIMA model of the training data. It returns
the same model as we predict, shown on the left table of Table 2). We can also see that the AIC and
BIC values of the model are quite low, which indicates that the model performs well.

Table 2: Outcome of the ARIMA Model and Result of Ljung-Box Test

To test the ARIMA model, the first thing we do is determine the model’s residuals. From the graph
in the lower right corner of Figure 5, we find that the residual distribution satisfies normality. That is,
the residuals of the model are concentrated at a value near 0, and this value obeys a normal distribution
with the mean zero, which means the value is white noise. Next, we consider the Ljung-Box test for
the model, shown on the right table of Table 2. Since the null hypothesis is that the original series is
a white noise series, we consider that the correlation coefficient is not significantly different from zero
when we obtain a 𝑝-value greater than the significance level of 0.05 or 0.1. In this model, the 𝑝-value
we obtained for the Ljung-Box test is 0.1379 (greater than 0.1), so we consider the original series a
white noise series. In short, the model passes the test.

Team 2222562 Page 8 of 25

Figure 5: Residuals of the ARIMA model

In order to obtain a more accurate model, we also try to dynamic the ARIMA model. The logic is
that we put all the data from previous days into the ARIMA model as training data and come up with
a prediction for the next day. In this case, the ARIMA model is dynamic because the training data is
constantly being updated day by day. For example, on the closing of the fifth day, we use the ARIMA
model to predict the data of the sixth day using the data of the previous five days. Then, this is repeated
several times until the whole data (1826 days Bitcoin price) except the first five data is predicted. We
record all the predicted data and then plot a graph to compare the predicted data to the original data,
shown on the left graph of Figure 6.

Figure 6: Plot of Predictions from the Dynamic ARIMA model

We hardly see the presence of the predicted line in Figure 6. That is to say, the predicted and raw
values almost overlap. For the right graph of Figure 6, we zoom a part of the prediction graph, and it
is clear that the predicted data is almost the same as the original data shifted one day to the right. In
other words, our new predicted value is very close to the last value of the training data. The reason for
this situation is overfitting. Dynamic ARIMA uses a large amount of data to predict one future day’s
value, resulting in a low biased model but has a high variance (the model is too detailed and has low
generality). In fact, we even tried to increase the number of predicted days from 1 to 20, but the results

Team 2222562 Page 9 of 25

still suffer from overfitting.

2.2.3 Model Outcome

Getting the coefficients from the left table of Table 2, we can get the final mathematical equation
for the model from ARIMA (for the data after doing the log and differencing operations):

(1 + 0.8029𝐵) (𝑋𝑡 − 0.0019) = (1 + 0.7658𝐵)𝑒𝑡 ,

So
𝑋𝑡 = 3.425 × 10−3 − 0.8029𝑋𝑡−1 + 𝑒𝑡 + 0.7685𝑒𝑡−1,

where 𝑋𝑡 represents the 𝑡th data, and 𝑒𝑡 represents the 𝑡th error term.
We visualize the final outcome we get from that model (Figure 7).

Figure 7: Plot of Predictions using the ARIMA Model

2.3 Long Short-Term Memory (LSTM)
2.3.1 Introduction to the Model

Long Short-Term Memory (LSTM) is a special type of Recurrent Neural Network (RNN) capable
of learning long-term dependencies. In RNN, because there is a recursive effect, the state of the hidden
layer at the last moment is involved in the computation process at the present moment. That is to say,
the selection and decision are made regarding the previous state. LSTM inherits this advantage.

LSTM typically consists of several memory blocks, known as cells, connected through different
layers. Gates control the information stored in the cell and hidden states through activation functions
like sigmoid and tanh. In general, the gates take the hidden states from the previous step ℎ𝑡−1 and the
current input 𝑥𝑡 and multiply them pointwise by weight matrices 𝑊 , and a bias 𝑏 is added to the model.
There are three main gates (using tanh as an example):

Team 2222562 Page 10 of 25

• Forget gate. It determines what information to delete:

𝑓𝑡 = 𝜎(𝑊 𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏 𝑓)

• Input gate. It determines which values in the input are used to update the memory state:

�̂�𝑡 = tanh(𝑊𝑐 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)

𝑈𝑡 = 𝜎(𝑊𝑢 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑢)
𝐶𝑡 = 𝑓𝑡 · 𝐶𝑡−1 +𝑈𝑡 · �̂�𝑡

• Output gate. It determines the value of the output based on the input and memory state:

𝑂𝑡 = 𝜎(𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑂𝑡 · tanh(𝐶𝑡)

(In the formulas above, 𝐶𝑡 represents the cell state,𝑈𝑡 refers to the updated filter, 𝑂𝑡 is the cell state
that is going to output, and ℎ𝑡 stands for the hidden state to be passed on to the next cell)

2.3.2 Adjustment of the Model

Before feeding the data into the model as training data, we need to normalize the original data. There
are two reasons for doing the normalization. First, normalization can improve the speed of the gradient
descent method to solve the optimal solution. Since LSTM is developed based on RNN, the essence
of LSTM is to minimize the loss by gradient descent method to obtain the optimal solution. Applying
normalization to the data in the gradient descent method can help the model reach the convergence state
faster. Second, normalization has the potential to improve accuracy. According to the characteristics
of the original data (the values are relatively concentrated), we do not consider standard deviation
normalization and nonlinear normalization. Instead, we choose linear normalization. The formula is:

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥) .

Before training a model for machine learning, we need to choose the right hyperparameters. In
LSTM models, a few essential hyperparameters are shown below:

• Epoch: this is the total number of model forward or backward propagation iterations.

• Number of hidden layers: the number of hidden layers of the neural network. Although our input
data is of low dimensionality (Value is the only dimension), we still choose the number to be 10
to get better predictions.

• Batch Size: this is the number of training samples during one forward or backward propagation
before the weights are updated. The batch size must be the common factor of the training and
test sets. Since the length of our training and test sets is 1455, we choose a factor of 97.

Team 2222562 Page 11 of 25

Figure 8: Learning Curves of the LSTM Model when Epoch = 15 and Epoch = 20

• Time step: the lag length between the training and test sets. In this case, we choose 5, which
means that the overall data is considered with a lag of 5 days.

Figure 8 is when we take Epoch equal to 15 and when Epoch is equal to 20. We can see that
the training loss and validation loss are almost equal. When Epoch exceeds 20, the model will be
overfitting, so we finally determine Epoch to be 20.

In the time series, cross-validation is not easy to do. We cannot choose random samples and assign
them to either the test set or the train set. The reason is that we may choose a value from the future
to test a value from the past. That situation makes no sense. In simple words, we want to avoid
future-looking when we train our model.

2.3.3 Model Outcome

The visualization of the final LSTM model is shown on the left graph of Figure 9. In the plot, “raw”
represents the original data, “train” means the fitted values of original training data, and “test” indicates
the prediction values of the model. For the LSTM model, we can hardly see any original data, which
means the overall performance of the model is great. The right graph of Figure 9 shows the partial
enlargement. Although there are still some subtle differences between the original and predicted data
from day to day, the overall trend is successfully simulated.

Figure 9: Plot of Predictions using the LSTM model

Team 2222562 Page 12 of 25

3 Model Assessment

3.1 Visualized comparison
In order to horizontally compare the predictions from different models for the same set of data, we

first plot the original data, the ARIMA prediction data, and the LSTM prediction data on one graph
(Figure 10). The orange line represents the original Bitcoin dataset, the blue line is the predictions of
ARIMA, and the dark blue line is the predictions of LSTM. From the left graph of Figure 10 it is easy
to see that LSTM has better prediction results than ARIMA. ARIMA is more like a monotonically
increasing polynomial function than LSTM. The right graph of Figure 10 is an enlarged graph of the
right graph, starting from the first date of the test data (the last 20% of the original Bitcoin data).

Figure 10: Visualization of Comparison between Predictions using the ARIMA Model and LSTM
Model

From an algorithmic point of view, we would also choose to use the LSTM model because the fitted
line of the ARIMA model is too smooth compared to that of the LSTM model. However, in order to
achieve maximum returns, we focus more on short-term investments (which will be discussed in detail
later). An overly smooth curve does not meet our needs because it can only reveal trends over a large
time horizon (say six months to a year) and cannot show specific daily changes.

3.2 Evaluation with MSE
To compare the model more logically and accurately, we use Mean Square Error (MSE) to evaluate

the model, an essential metric of the model accuracy because it calculates the mean of the sum of
squared difference between all predicted values and true values. The formula for MSE is

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2,

where 𝑛 is the data size, 𝑌𝑖 is the real value, and 𝑌𝑖 is the predicted value.
The MSE of the ARIMA model is 635167400, while the MSE of the LSTM model is 6757875,

shown in Table 3. Therefore, we choose LSTM as our final model to accomplish the data prediction.
We then apply LSTM to the Gold data, fit the model (Table 4), and visualize the predictions (Figure

11). The MSE for this model is quite low, which indicates that the accuracy of the predicted Gold
prices is high.

Team 2222562 Page 13 of 25

Table 3: MSE and RMSE of the LSTM model for
the Bitcoin Data

Table 4: MSE and RMSE of the LSTM model for
the Gold Data

Figure 11: Plot of Predictions of the Gold Data using the LSTM model

4 Optimal Portfolio Model
Financial markets are fraught with uncertainty. Since we have to decide the time to trade stocks

based on the results of our forecasting models, thus we should consider increasing return rates while
reducing the risk of our investments. The core task in our investment optimization is to find out how
an investor can allocate the assets to achieve maximizing (cumulative) returns for a given risk. In this
section and next section, we will introduce our optimal portfolio model for predicting optimal weights
and optimal action model for predicting time to trade.

We first get the predicted price of each stock to get the daily return in these five years. When
deciding how to allocate the funds and trade stocks, we need to set the appropriate weights for each
stock trading. In other words, when trading stocks, we should allocate money by using 50% for Gold
and 50% for Bitcoins or using 30% for Gold and 70% for Bitcoins. Regarding this problem, we have
the following three weighting schemes.

4.1 Portfolio with Given weights
Before trading, we have been given some preset weights in these weighting schemes, for example,

40% for Gold and 60% for Bitcoins. Furthermore, we get the daily return of stocks with such a
weighting method. The result for the stock combination model is shown in Table 5.

Team 2222562 Page 14 of 25

dates gold bits Portfolio
1 -0.001567 -0.001028 -0.001244
2 -0.001466 -0.000690 -0.001000
3 0.000728 0.000986 0.000883
4 0.004708 -0.000372 0.001660
5 0.004374 -0.000910 0.001203

Table 5: Daily Return of Predicted Data

Also, we create Daily Return Rate (the left graph in Figure12) and Cumulative Return Rate (the
right graph in Figure12) to figure out the returns of the portfolio with the given weight (Gold : Bitcoins
= 0.4 : 0.6).

Figure 12: Daily Return Rate(left) and Cumulative Return Rate(right) with given weight(Gold :
Bitcoins = 0.4 : 0.6)

4.2 Equally-weighted Portfolio
In these weighting schemes, we equally allocation money on both stocks. That is to say, allocating

50% money on Gold stock and 50% money on Bitcoin stock. Although this method rarely becomes
the optimal portfolio, we can use this as a reference benchmark for other portfolios. In Figure 14, we
plot the cumulative return rate change corresponding to time in the same graph. The blue line denotes
the portfolio in the first method, given the weighting scheme(Gold : Bitcoins = 0.4 : 0.6), and the
tangerine red line shows the equally-weighted scheme. The first weighting scheme is better than the
equally-weighted portfolio in this situation.

Moreover, we need to check the correlation of the two assets, Gold stock and Bitcoin stock, since
it is essential for deciding the portfolio in the financial market. For example, investors can achieve
diversification benefits by adding low or negatively correlated mutual funds to an existing portfolio. In
other words, if the correlation between two assets is negatively correlated, investors can use them to
hedge their portfolios and reduce market risks due to volatility or shape price swings. The following
Table 6 and Figure 13 shows the correlation between Gold and Bitcoins.

Team 2222562 Page 15 of 25

Figure 13: Hot Image Figure 14: Equal Weight vs. Set Weight

gold bits
golds 1.000000 0.019372
bits 0.019372 1.000000

Table 6: Correlation Table

Each element in the matrix is the correlation index of that stock, ranging from -1 to 1, a positive
index denotes a positive relationship, and a negative index denotes a negative relationship. The
diagonal elements in the matrix are always 1 since the stock and itself are always a totally positive
relationship. The correlation between gold and stock is about 0.02, meaning these two assets have
almost no relationship with each other. Thus, it proves our validity in operating two assets separately.
Besides correlation which only shows the linear relationship between assets, not telling the volatility
of assets, we need to introduce a covariance matrix to tell us that information.

gold bits
golds 0.003876 0.000409
bits 0.000409 0.114935

Table 7: Covariance Matrix

From Table 7, we find out Bitcoin has apparent volatility since the covariance for Bitcoin is 0.115,
which is a great number for covariance. After exploring the above two coefficients, we should find out
the standard deviation to express the risks of the investment combination after knowing the weights
and covariance matrix. The following equation is the formula for the method, where 𝜎𝑝 is the standard
deviation of a portfolio,

∑
is the covariance matrix of returns, and 𝜔 is portfolio weights (𝜔𝑇 is the

transpose of portfolio weights).

𝜎𝑝 =
√︁
𝜔𝑇 · Σ · 𝜔 = 0.2054

Team 2222562 Page 16 of 25

4.3 Exploring the optimal portfolio of stocks
From the above two weighting schemes, we can see pre-set weights proves better than equally-

weight scheme. However, finding the best weights is still a problem to be solved. Considering how
to balance the returns and risks when choosing the investment combination, we can introduce the
Markowitz model to analyze the data and determine the best weights for predicted data.

4.3.1 Monte Carlo Simulation

Markowitz model [6] works well here because the background of the problem perfectly fits the
prerequisite of the model. The investor considers each investment choice based on the probability
distribution of the returns of the securities over a given holding time. The investor estimates the risk
of a portfolio of securities based on the expected rate of return. The investor’s decision is simply a
sentence about the risk and return of the security. At a certain level of risk, the investor expects to
benefit the most. Moreover, we decide to introduce Monte Carlo Simulation to create random weights
to compare the outcome from different weights.[4]

When we use Monte Carlo Simulation to analyze, we randomly create a set of weights to calculate
the returns and standard error of the return and repeat this progress many times(10000 times in our
model).[3] Through this method, we take in each return and standard error into the model as a point to
construct the scatter plot, Figure 15.

Figure 15: Simulation Result

The nature of investment is to choose the balance between risks and returns, and Figure 15 depicts
the two elements. Each point in the graph shows a portfolio combination, the x-axis shows the standard
deviation of risks, and the y-axis is return rates.[2] Markowitz investing combination rule considers
the wise investor is always maximizing the returns given fixed risk, or minimizing the risk given fixed
return. It is shown in the graph as red edge, whose points on edge are the most effective investment
combinations. Now we find out a series of most-effective investment weight combinations. However,
we need to choose a strategy to find a final weight for Gold and Bitcoins. Here we introduce and
compare two strategies: Investment risk minimization portfolio (minimize the risks) and Optimal
portfolio (maximize the returns with uncertain risks).

Team 2222562 Page 17 of 25

4.3.2 Investment risk Minimization Portfolio

One strategy is to find the highest return in the lowest risk situation, which is called Global minimum
volatility(GMV) portfolio[1]. We successfully find this combination and draw it in the Figure 16.

Figure 16: GMV Portfolio

4.3.3 Optimal portfolio of Investments

Since we use the optimal portfolio of investments here, we have to admit that certain risks will
show up, while An wise investor can always burden certain risks to strive for a higher return. Thus, we
will introduce Sharpe Ratio1 here to help us balance return and risks for each investment combination.

𝑅𝑠 =
𝑅𝑝 − 𝑅 𝑓

𝜎𝑟

where 𝑅𝑠 is the Sharpe Ratio, 𝑅𝑝 is expected rate of return, 𝑅 𝑓 is interest Rate with no risk, 𝜎𝑟 is
the standard deviation of excess returns. The numerator calculates the spread, the excess return of an
investment compared to a benchmark representing the entire investment portfolio. The denominator
standard deviation represents the return volatility and responds to the risk, as higher volatility predicts
higher risk. We can simply divide the mean of the excess return by the standard deviation, which is the
Sharpe ratio measuring return and risks, and multiply it by

√
252 (there are 252 trading days in a year)

to get the annualized Sharpe Ratio.
Then, we add Sharpe Ratio as the third variable into the return-risk scatter plot, Figure 17, and we

use color to show Sharpe Ratio here. We find that the upper edge has higher Sharpe Ratio here. Thus,
we should figure out the combination with greatest Sharpe Ratio in the scatter plot and find the weight
of that combination, as shown in Figure 18.

1The ratio is the average return earned in excess of the risk-free rate per unit of volatility or total risk.

Team 2222562 Page 18 of 25

Figure 17: Sharpe Ratio Plot

4.4 Model Outcome
In this section, we introduce and compare three weighting schemes: portfolio with given weights,

portfolio with equal weights, and optimal portfolio weights. We utilize Monte Carlo Simulation,
Markowitz model, and Sharpe Ratio to determine the best weights for predicted data. Through these
steps, we get the optimal weights for Gold and bits is 0.188 : 0.812. That is to say; we decide to allocate
$188 for Gold investment and $812 for Bitcoins investment.

Figure 18: Optimal Combination

Team 2222562 Page 19 of 25

gold bits
weight 0.188 0.812

Table 8: Optimal Weight Table

5 Optimal Strategy Model

5.1 Introduction to Dynamic Programming Model
From the optimal portfolio model result, we decide to use $188 to make investments in Gold and

$812 to make investments in Bitcoins. In this way, we can avoid the difference in trading days since
only Bitcoins can be traded at weekends. When we decide to separately invest the stocks, in order to
get greater return, if we find a model that assists us maximize either investment, the final return rate
will definitely the highest return rate.

We decide to choose the dynamic programming model to find out the best time to trade since this
problem meets the optimality principle2with the overlap of subproblems3 and no posteriority4. In this
model, in order to maximize the return rate for each day, we need to compare and choose the the higher
return rate for two choices: buy the assets or sell the assets. From this guideline, we can gradually find
the optimal operation from start day to the last day.

In this model, 𝑀 is as the cash, 𝛼 is as transfer fee, 𝑆 is as the stock. We first set the start of cash
(𝑀0) in hand as 1, and the start of stock as the maximum stock (𝑆0) can be bought using 𝑀0.

𝑀0 = 1 𝑆0 =
1 · (1 − 𝛼)

𝑃0

The state transfer function will be as follow:

𝑀𝑡 = max(𝑀𝑡−1, 𝑆𝑡−1 · 𝑃𝑡 (1 − 𝛼))

𝑆𝑡 = max(𝑆𝑡−1,
𝑀𝑡−1 · (1 − 𝛼)

𝑃𝑡

)

5.2 Model Outcome
We predict the best time to trade from our Dynamic Programming (DP) Model and the predicted

stock price from the LSTM model. To better show the operation timeline, we mark the time to sell
stock as a green circle and the time to buy stock as an orange triangle in the following Figure 19 and
Figure 20. After applying the time information given by our model, we make our investment change
from 1,000.00 dollars to 14,140,234.70 dollars, which is a big success.

2Regardless of the past states and decisions, the remaining decisions must constitute the optimal strategy for the state
formed by the previous decisions.

3Thesub-strategiess of an optimal strategy are always optimal
4Each state is a complete summary of the past history

Team 2222562 Page 20 of 25

Figure 19: Bitcoins DP Result

Figure 20: Gold DP Result

6 Sensitivity Analysis

6.1 Method
To test the sensitivity of transaction, we decide to test our model by changing the transaction fee

rate from 50% to 150%. In other words, if the real Gold transaction fee rate is 1%, we will test how will
the return rates change when we change the transaction fee rate from 0.5% to 1.5%. We will decide
whether the model is sensitive to transaction cost according to the change of the final return.

Team 2222562 Page 21 of 25

6.2 Result
After making the transaction cost rate change from 50% to 150%, we create two plots, Figure 21,

to show the influence of transaction fee rate on the final returns for these two stocks.

Figure 21: Sensitive Plot (Bitcoin / Gold)

From the figure above, the left one shows Bitcoins’ change of return rate caused by increasing
transaction cost, and the right one shows Gold’s change of return rate caused by increasing transaction
cost. The return rate change for Bitcoins changes from 26000 to 12000, decreasing for about 54%,
while the return rate change for Gold changes from about 1.45 to 1.15, decreasing for about 21%.
Although comparing the two stocks, Bitcoins is more sensitive to the change of transaction cost, the
change for both stocks shows that they are all sensitive to the transaction cost. This result is caused
mainly by the dynamic programming model. Since the dynamic programming model is to optimize
the final return by catching each likely chance to trade. Thus, even if the change of transaction cost
from 0.01 to 0.03 does not seem like a great number, it causes a great change to the final return.

7 Strengths and Weaknesses

7.1 Strengths
• The Optimal Portfolio Model can both fit for two types of volatile assets allocation but also more

types of volatile assets allocation.

• Dynamic Programming Model can accurately predict each possible profitable chance to invest.

7.2 Weaknesses
• Our model results may be over-fitted, because the number of real data used for validating the

model is too small.

• Our model might be simple and not realistic since it is only based on the closing price of Gold
and Bitcoin without the highest and lowest daily price of these two volatile assets.

Team 2222562 Page 22 of 25

• The output from Dynamic Programming Model changes corresponding to change in transaction
commission.

8 Conclusion
To predict the trend of Bitcoin and Gold, we choose time series models, ARIMA and LSTM. We

perform parameter tuning and final result comparison for both ARIMA and LSTM models, respectively.
In ARIMA, we also try to dynamize the model but give up this approach due to overfitting at last.
Thus, we will choose the LSTM Model for prediction since the results of our LSTM model are much
better than those of the ARIMA model, both in terms of visualization and MSE comparison. After
accessing the predicted asset daily prices, we use Dynamic Programming to predict the optimal dates
to trade and the type of asset to trade. After applying the prediction to the raw data, we appreciate the
investment from $1000.00 to $14,140,234.70.

Team 2222562 Page 23 of 25

9 Memorandum
DATE: Jan 1, 2022
TO: Market Traders
FROM: Team 2222562
SUBJECT: Trading Strategies for Gold and Bitcoin

Let’s think of the daily float and Bitcoin and Gold prices as stocks. Then for stocks, predicting the
future value requires considering the previous values. So for Bitcoin and Gold price prediction, we
are using the LSTM model that "remembers" the previous input values. The LSTM model is a neural
network algorithm that stimulates neurons to arrive at a relatively more accurate model. Compared to
other models, LSTM floats more significantly on a daily basis. This means that you should optimize
short-term trading by frequently buying and selling volatile assets.

Before you make a decision on short-term trading, we recommend you first find out the best portfolio
weight for investment. In our model, based on the predicted daily price data on Gold and Bitcoins over
the recent five years, the results show the best weight is 0.188 : 0.812. That is to say, when you decide
to use $1000 for beginning investment, the combination of the optimal weight should be allocating
$188 on Gold and $812 on Bitcoin. One of our model advantages shows that we can get the optimal
weight for different circumstances, even when choosing 20 different types of volatile assets.

After you decide on allocation weights on volatile assets, to better help with your short-term trading
decision-making process, we develop a model using Dynamic Progressing Model to optimize every
day’s return rate to strive for the highest overall return rate. We can offer you the best timeline for
trading different types of volatile assets through this method. Our application of this model on the
Gold and Bitcoin successfully appreciates the investment from $1,000.00 to $14,140,234.70, which is
a significant result in the trading market.

Strategies List:

1. You should choose several volatile assets based on balancing risks and benefits for hedging.

2. You can use our LSTM model to make predictions on the future daily price of your volatile assets
based on our LSTM model.

3. You should use Optimal Portfolio Model to find out the best portfolio weights for investment.

4. You can use the trading timeline from the Dynamic Programming Model to trade assets on time.

Team 2222562 Page 24 of 25

References
[1] Taras Bodnar, Stepan Mazur, and Yarema Okhrin. Bayesian estimation of the global minimum

variance portfolio. European Journal of Operational Research, 256(1):292–307, 2017.

[2] Rene D. Estember and Michael John R. Maraña. Forecasting of stock prices using brownian motion
monte ..., Mar 2016.

[3] Xing Jin and Allen X. Zhang. Decomposition of optimal portfolio weight in a jump-diffusion
model and its applications. Review of Financial Studies, 25(9):2877–2919, 2012.

[4] YAREMA OKHRIN and WOLFGANG SCHMID. Estimation of optimal portfolio weights. Inter-
national Journal of Theoretical and Applied Finance, 11(03):249–276, 2008.

[5] Shay Palachy. Stationarity in time series analysis, Sep 2019.

[6] Samik Raychaudhuri. Introduction to monte carlo simulation. In 2008 Winter Simulation Confer-
ence, pages 91–100, 2008.

[7] Jayesh Salvi. Significance of acf and pacf plots in time series analysis, Mar 2019.

Appendices

Appendix A: Part of our LSTM Source Code

1 # Slice the data into train and test sets
2 train <- dataset[1:train_size]
3 test <- dataset[(train_size + 1):length(dataset)]
4 look_back <- 5
5 trainXY <- create_dataset(train, look_back)
6 testXY <- create_dataset(test, look_back)
7

8 dim_train <- dim(trainXY$dataX)
9 dim_test <- dim(testXY$dataX)

10

11 # Reshape input to be [samples, time steps, features]
12 dim(trainXY$dataX) <- c(dim_train[1], 1, dim_train[2])
13 dim(testXY$dataX) <- c(dim_test[1], 1, dim_test[2])
14

15 # Fit the Model
16 model <- keras_model_sequential()
17

18 # Train the model
19 trained_model <- model %>%
20 layer_lstm(units = 10,

Team 2222562 Page 25 of 25

21 input_shape = c(1, look_back)) %>%
22 layer_dense(units = 1) %>%
23 compile(loss = ’mean_squared_error’,
24 optimizer = ’adam’) %>%
25 fit(
26 trainXY$dataX ,
27 trainXY$dataY ,
28 epochs = 20,
29 batch_size = 97,
30 verbose = 1,
31 validation_split = 0.25
32)
33 plot(trained_model)
34

35 trainScore <- model %>%
36 evaluate(
37 trainXY$dataX ,
38 trainXY$dataY ,
39 verbose = 2)
40

41 testScore <- model %>%
42 evaluate(
43 testXY$dataX ,
44 testXY$dataY ,
45 verbose = 2)
46

47 sprintf(
48 ’Train␣Score:␣%.4f␣MSE␣(%.4f␣RMSE)’,
49 trainScore * spread^2,
50 sqrt(trainScore) * spread)
51

52 sprintf(
53 ’Test␣Score:␣%.4f␣MSE␣(%.4f␣RMSE)’,
54 testScore * spread^2,
55 sqrt(testScore) * spread)
56

57 trainPredict <- model %>%
58 predict(trainXY$dataX ,
59 verbose = 1)
60 testPredict <- model %>%
61 predict(testXY$dataX ,
62 verbose = 1)
63

64 trainPredict <- trainPredict * spread + min_value
65 testPredict <- testPredict * spread + min_value

