Performance comparison of OpenMP and OpenACC in Floyd
Warshall Algorithm

Shengyuan Wang, Kaiyang Yao
COMP 445 - Parallel/Dist Processing

May 28, 2023

Abstract

Floyd-Warshall algorithm is a shortest path algorithm developed by a United States famous
computer scientist R.W. Floyd in 1962. This paper presents the basic concept of this algorithm
and its performance analysis. Then it compares three different parallel architectures — OpenMP,

OpenACC-GPU, and OpenACC-CPU(Multicore) — for faster problem solving process.

1 Introduction

There are several famous shortest path algorithms, such as A*, Kruskal’s, Dijkastra’s, Bellman-Ford,
Floyd-Warshall, etc. Floyd-Warshall is specialized in directed, weighted graphs. Although it is similar
to the Dijkastra’s algorithm that takes an assigned starting vertex and find the shortest distance from
this vertex to the rest, Floyd-Warshall finds the shortest path between any two vertices, also known

as the multi-source problem.

2 Algorithm

Floyd-Warshall algorithm utilizes the dynamic programming approach based on a concept of in-
termediate vertices. Specifically, it finds the distance between all pairs of vertices and checks if
adding a new intermediate vertex could shorten the distance. For a given graph G(V, E), we cre-
ate a |V| x |V| grid. The element (7, 7) in the grid indicates the shortest distance from vertex ¢
to vertex j. The core formula, or state transition equation in terms of dynamic programming, is
dist = mian(dist[i, j], dist[i, k] + dist[k,j]). This formula means each time we find a shorter path
between i and j via an intermediate vertex, we will update the distance. Otherwise, we will skip

it and find other intermediate vertices[9]. After finding through all the possible vertices, the result

of the grid is the shortest distance between any two pairs. The correctness of this algorithm can be

proofed by mathematical induction, which is beyond the scope of this paper.

3 Example

For the graph below, we want to use Floyd-Warshall algorithm to find the shortest path among all

pairs of vertices.

Figure 1: Graph Example

Initial Step

First, it is noted that the graph has 4 vertices, so we create a 4 x 4 matrix to store the initial distance.
In the matrix, the cell (4, j) indicates the shortest distance from vertex i to vertex j at current step.
So for the initial state, we have three different ways to fill the cell. First, if i and ;j are the same
vertex, the distance should be 0. Thus, we set all cells in the main diagonal (top left to bottom right)
to 0. Second, if 7 and j are different and there is a direct edge from vertex i to vertex j, then set cell
(i,7) to the weight of that direct edge. Third, if there is no direct edge from : to j, we then set cell

(i,7) to oo, which means it is impossible to find a distance.

1 2 3 4

1 0 3 00 5]

2 2 0) 4

3 0 1 0 0

4 0 0 2 0
AO

Figure 2: Initial Matrix

Iterative Step

Next, we move on to the core part of the algorithm. For each of the iteration, we choose a new
intermediate point k. Then we copy a new matrix A" from A"~! and update A" based on the
distance by passing point k. Recall that the update rule is to compare A} with (A7, " + A7), If

the later is smaller, then we update A7 ; with the new smaller value.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 0 3 o0 5 1 0 3] o0 5 1 0 3 o0 5 1 0 3 7 5]

2 2 0 o0 4 2 2 0 o 4 2 2 0 L] 4 2 2 0 6 4

3 L] 1 0 0 3 3 1 0 5 3 3 1 0 5 3 3 1 0 5

4) 0 2 0 4 L) L) 2 0 4 5 3 2 0 4 5 3 2 0
A' (mid: 1) A% (mid: 2) A% (mid: 3) A* (mid: 4)

Figure 3: Iterative Matrix

Code Example

for(int k = 0; k < N; k ++) {
for(int i = 0; i <N; i +4+) {
for(int j = 0; j < N; j ++) {
int i0 = i«N + j;
int i1 = iz:N + k;
int i2 = k«N + j;

if (mat[il] !'= -1 && mat[i2] != —1){
int sum = (mat[il] + mat[i2]);
if (mat[i0] == -1 || sum < mat[i0])
mat[i0] = sum;
¥

4 Parallel Architectures

It is important to note that we have an O(n?) for loop in the sequential version, which is unde-
sirable in performance when the data size is large. In the rest of the paper, we will consider im-
provements on the giant for loop by using parallel architectures. While these architectures utilize
different techniques in implementations, they all parallelize the code so that multiple instructions

are run synchronously.

4.1 OpenMP

OpenMP is a shared-memory multithread architecture, in which a primary thread forks a specified

number of sub-threads and they work together to divide tasks. The updated code is shown below.

void Floyd Warshall(int+ matrix, int size) {

int «row _k = (int«)malloc(sizeof(int)«size);

#pragma omp parallel default(none) shared(row_k)
for (int k = 0; k < size; k++) {
#pragma omp master
memcpy(row_k, matrix + (k « size), sizeof(int)«size);
#pragma omp for schedule(static)
for (int i = 0; i < size; ++i) {

for (int j = 0; j < size; ++j) {

if (matrix[i « size + k] != -1 && row _k[j] != —-1) {
int new_path = matrix[i « size + k] + row k[j];
if (new_path < matrix[i « size + j] || matrix[i « size + j] == —1)
matrix[i « size + j] = new_path;

First, we added #pragma omp parallel at the outermost for loop to create a parallel region on
the entire nested for loop. This indicates that the code uses the multiple instruction / multiple
data (MIMD) CPU architecture as well as the thread pool shared memory hardware. Then we used
#pragma omp master for the memcpy instruction, which means it will be run only by the master
thread. This reflects the use of collective synchronization parallel pattern. Moreover, we added
#pragma omp for, which indicates the use of the parallel for loop program structure. Inside the
loop, the program will decompose the data among each thread and join them together when the
loop is done, a process reinforcing the fork-join structure. Note that schedule(static) specifies
that the for loop has the static scheduling type. OpenMP divides iterations into chunks that are
approximately equal in size and it distributes at most one chunk to each thread. This is the data

decomposition parallel strategy.

4.2 OpenACC-CPU Multicore

Next, we tried the parallel version using the OpenACC standard. In the CPU multicore version, we
added #pragma acc parallel loop to declare the loop below is parallel. Since OpenACC assumes
all variables to be shared by default, we don’t need to explicitly declare the shared variables row_k

and k.

void Floyd Warshall(int+ matrix, int size) {

int «row k = (int«)malloc(sizeof(int)«size);

for (int k

0; k < size; k++) {
memcpy(row_k, matrix + (k « size), sizeof(int)«size);
#pragma acc parallel loop
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
if (matrix[i « size + k] != -1 && row k[j] != -1) {
int new_path = matrix[i « size + k] + row k[j];
if (new_path < matrix[i « size + j] || matrix[i « size + j] == —1)

matrix[i « size + j] = new_path;

b

In terms of the parallel pattern, CPUs with multicores are examples of MIMD architecture. The im-
plementation shows the Parallel For Loop, Single Program Multiple Data(SPMD) program structure
and Shared Data data structure. Moreover, Data Decomposition is used as the parallel algorithm

strategy.

4.3 OpenACC-GPU

Finally, we run the GPU version under the OpenACC standard. We added #pragma acc kernels so
that the for loop will be transformed into kernel functions that can be executed on many cores of the
GPU. Then we added #pragma acc loop independent to declare that the loop below is independent
among cores. Note that this have to be done one more time before the inside loop to make the loop

truly independent.

void Floyd Warshall(int« matrix, int size) {
int «row_k = (int«)malloc(sizeof(int)xsize);
#pragma acc kernels

#pragma acc loop independent

for (int k = 0; k < size; k++) {
memcpy(row_k, matrix + (k « size), sizeof(int)«size);
#pragma acc loop independent
for (int i = 0; i < size; ++i) {
#pragma acc loop independent

for (int j = 0; j < size; ++j) {

if (matrix[i « size + k] != -1 && row k[j] != —-1) {
int new_path = matrix[i « size + k] + row k[j];
if (new_path < matrix[i « size + j] || matrix[i « size + j] == —1)
matrix[i « size + j] = new_path;

b

In terms of the parallel pattern, GPU is an example of the SPMD architecture. The implementation

reflects a Shared Data data structure and Data Decomposition parallel algorithm strategy.

5 Result

We did a holistic test on the performance of four different versions of this algorithm: sequential,
OpenMP, OpenACC-CPU Multicore, and OpenACC-GPU. The problem size for these tests is the num-
ber of vertices, because it is the only variable that influences the algorithm complexity as well as the

size of our matrix.

5.1 Scalability Test

First, we did the scalability test on OpenMP and Multicore to check how good do they in handle

increasing problem size.

OpenMP

In strong scalability test, we tried 1, 2, 4, 6, 8, 12, 16 different threads on problem sizes 1000, 1400,
2000, 2800, 4000. In weak scalability test, we created 5 scale lines starting from 250000, 500000,
100000, 200000, 400000 with 1 thread. Then for each line, we doubled the size and doubled the
threads for 5 times.

To generate the data according to the strong scalability test method in OpenMP, we can go to

./0penMP and run the following instruction.

make
bash run_strong tests.sh $repeat time

bash run_weak_tests.sh $repeat time $start_size $num line

OpenMP Efficiency Weak Scalability: Scaling the number of processes
1.25 = 1,000,000 and the problem size proportionally by scalar of 2

@ == 2,000,000 500 = 250,000
1.00 aad

4,000,000 400 == 500,000
0.75 1,000,000
’ == 8,000,000 200 00000
0.50 == 16,000,000 ! — 4000000

200
Ideal Efficiency

025 100 //

0.00 0
2 4 6 8 10 12 14 16 1 2 4 8 16

Number processes and scalar of problem size

Efficiency
Runtime

Number of Threads

Figure 4: OpenMP Scalability Test (Left : Efficiency Right : Weak Scalability)

In strong scalability test, a efficiency greate than 75% is considered strong. Our OpenMP version
has a good scalability from 2 to 8 threads, with the middle range even better than the ideal efficiency.
When the thread number change to 10 and above, our program lose the strong scalability.

In weak scalability test, all lines excepts the top one (with the largest problem size) suggests a
good weak scalability within 8 threads threshold. This indicates that for problem sizes less than
2000000 and threads number less than 8, our OpenMP solution performs good weakly scalablity.
However, when the problem size is larger or the threads number turns to 16, the performance is
not ideal. A reasonable speculation is that add more threads after 8 negatively effect the perfor-
mance because forking/joining threads and communicating between threads create extra time that

outweights the time saved.

Multicore

In the multicore version, we did the strong and weak scalability tests with the same data as we used
in the OpenMP.
To generate the data according to the strong scalability test method in OpenMP, we can go to

./MultiCore and run the following instruction.

make
bash run_strong tests.sh $repeat time

bash run weak tests.sh $repeat time $start size $num line

We get a similar set of result. In the strong scalability test, we have a good efficiency from 2 to 8
threads. The efficiency drops when the number exceeds 8. For weak scalability test, the program is

weakly scalabl with threads number less than 8 as well.

1.25

MultiCore Efficiency

1.00 =

0.75

0.50

Efficiency

== 1,000,000
== 2,000,000

4,000,000
== 8,000,000
== 16,000,000

Ideal Efficiency

0.00
2

Figure 5: Multicore Scalability Test (Left :

4

6

8 10 12

Number of Threads

14

5.2 Run Time Comparison

16

Weak Scalability: Scaling the number of processes
and the problem size proportionally by scalar of 2

500

400

300

200

Runtime

0

100 ///

1

2

4

8 16

Number processes and scalar of problem size

Efficiency Right : Weak Scalability)

250,000
500,000
1,000,000
2000000
4000000
8,000,000

Since we can not set thread number for the GPU device, we need to find an alternative way to test

the performance. One way to do is to fix the thread number of OpenMP and CPU Multicore as 8 and

test their run time together with the GPU and Sequential. We tried the problem size from 50 x 50

to 6400 x 6400, with each number scale by approximately /2 each time. Note that this will let the

total problem size be doubled. We compare the running time under different parallel architecture in

the following Table (1). Also, to be more clear and straightforward, we make Table (2) to calculate

speed up rate with the running time of sequential version as benchmark.

size 50x50 71x71 100x100 141x141 200x200 282x282 400x400 564x564 800x800 1128x1128 1600x1600 2256x2256 3200x3200 4512x4512 6400x6400
Sequential 0.003582 0.008782 0.024708 0.053147 0.091291 0.163811 0.605895 1.539944 3.868914 10.706321 29.06987 85.293091 267.105098 772.953232 2109.134367
OpenMP 0.001082 0.001827 0.003834 0.008233 0.027712 0.050268 0.092047 0.204183 0.844486 2.49502 7.091797 19.717603 56.091517 155.908222 426.455864
MultiCore 0.00407 0.003815 0.004507 0.005951 0.010765 0.020807 0.04098 0.076662 0.172534 0.566916 1.478288 3.765112 11.364483 32.018555 89.444232
OpenACC 0.001697 0.002026 0.003281 0.00691 0.013154 0.02513 0.04919 0.09546 0.169452 0.315167 0.456212 0.819619 1.395318 2.547093 5.489022
Table 1: Running Time

size 50x50 71x71 100x100 141x141 200x200 282x282 400x400 564x564 800x800 1128x1128 1600x1600 2256x2256 3200x3200 4512x4512 6400x6400
Sequential 1 1 1 1 1 1 1 1 1 1 1 1
OpenMP 3.310536044 4.806787083 6.444444444 6.455362565 3.294276848 3.258753083 6.582452443 7.541979499 4.581383232 4.291076224 4.099083772 4.325733255 4.761951758 4.957745153 4.945727202
MultiCore 0.8800982801 2.301965924 5.482138895 8.930767938 8.480352996 7.872879319 14.78513909 20.0874488 22.42406714 18.88519816 19.66455116 22.65353355 23.50349752 24.14079061 23.58044023

OpenACC 2.110783736

4.334649556

7.530630905 7.691316932 6.94017029 6.518543573 12.31744257 16.13182485 22.831917 33.97031098

63.72009066

104.0643165

191.4295508

303.4648645 384.2459307

Table 2: Speed-up Rate

From both Table(1) and Table(2), we can find that when problem size is smaller than 20, 000, all

three parallel architecture performs about the same in speeding up the algorithm. As problem size

increases, GPU and Multicore versions gradually perform their fast processing speed compared with

OpenMP version. As for tasks with problem size more than 640, 000, GPU version perform far better

than Multicore version.

6 Future Work

First, we are interested in making a fancy animation on the run time of the four approaches we
mentioned above with different data sizes. The animation will make the comparison more visually
appealing and will highlight the threshold moment when one approach overruns the other in speed.
Moreover, we intend to explore more shortest path algorithms, like Dijkstra’s or A*, to parallelize

them and compare the performance with that in Floyd Warshall Algorithm.

7 Conclusion

In this paper, we introduced the famous Floyd-Warshall shortest path algorithm with a detailed ex-
ample. Then we explored four different ways to implement the algorithm, one sequential approach
and three parallel approaches. In the parallel implementations, we used the OpenMP standard as
well as the OpenACC standard on both CPU and GPU. Next, we presented what modifications we
made in those versions based on the sequential code and what parallel patterns our code follows.
Finally, a holistic comparison is made among all approaches. The comparison includes the scalability

of OpenMP and OpenACC-CPU and the execution time of all four approaches.

References

[1]

(2]

(3]

(4]

[5]

(6]

[7]

(8]

[9]

[10]

Rajashri Awari. Parallelization of shortest path algorithm using openmp and mpi. pages 304—

309, 2017.

Hristo Djidjev, Sunil Thulasidasan, Guillaume Chapuis, Rumen Andonov, and Dominique Lave-

nier. Efficient multi-gpu computation of all-pairs shortest paths. pages 360-369, 2014.

Ben Lund and Justin W Smith. A multi-stage cuda kernel for floyd-warshall. arXiv preprint
arXiv:1001.4108, 2010.

Nudzejma Pozder, Dalila Corovic, Esma Herenda, and Belmin Divjan. Towards performance

improvement of a parallel floyd-warshall algorithm using openmp and intel tbb.

Piyush Sao, Hao Lu, Ramakrishnan Kannan, Vijay Thakkar, Richard Vuduc, and Thomas Potok.
Scalable all-pairs shortest paths for huge graphs on multi-gpu clusters. pages 121-131, 2021.

Daisuke Takafuji, Koji Nakano, and Yasuaki Ito. Efficient parallel implementations to compute
the diameter of a graph. Concurrency and Computation: Practice and Experience, page €5963,

2020.

Edvin Teskeredzi¢, Kenan Karahodzi¢, and Novica Nosovi¢. Comparison of the non-blocked and
blocked floyd-warshall algorithm with regard to speedup and energy saving on an embedded

gpu. pages 1-5, 2020.

Quoc-Nam Tran. Designing efficient many-core parallel algorithms for all-pairs shortest-paths

using cuda. pages 7-12, 2010.
Eric W Weisstein. Floyd-warshall algorithm. https://mathworld. wolfram. com/, 2008.

Li-yan Zhang, Ma Jian, and Ke-ping Li. A parallel floyd-warshall algorithm based on tbb. pages
429-433, 2010.

